Bioinspired detection of light using a porphyrin-sensitized single-wall nanotube field effect transistor.

نویسندگان

  • David S Hecht
  • Robert J A Ramirez
  • Mikhail Briman
  • Erika Artukovic
  • Kelly S Chichak
  • J Fraser Stoddart
  • George Grüner
چکیده

Single-wall carbon nanotube (SWNT) field effect transistors (FETs), functionalized noncovalently with a zinc porphyrin derivative, were used to directly detect a photoinduced electron transfer (PET) within a donor/acceptor (D/A) system. We report here that the SWNTs act as the electron donor and the porphyrin molecules as the electron acceptor. The magnitude of the PET was measured to be a function of both the wavelength and intensity of applied light, with a maximum value of 0.37 electrons per porphyrin for light at 420 nm and 100 W/m2. A complete understanding of the photophysics of this D/A system is necessary, as it may form the basis for applications in artificial photosynthesis and alternative energy sources such as solar cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-heating effect modeling of a carbon nanotube-based fieldeffect transistor (CNTFET)

We present the design and simulation of a single-walled carbon nanotube(SWCNT)-based field-effect transistor (FET) using Silvaco TCAD. In this paper, theself-heating effect modeling of the CNT MOSFET structure is performed and comparedwith conventional MOSFET structure having same channel length. The numericalresults are presented to show the self-heating effect on the I...

متن کامل

Electrical detection of hepatitis C virus RNA on single wall carbon nanotube-field effect transistors.

We report the unambiguous detection of a sequence of Hepatitis C Virus (HCV) at concentrations down to the fractional pM range using Single Wall Carbon Nanotube (SWNT) Field Effect Transistor (FET) devices functionalized with Peptide Nucleic Acid (PNA).

متن کامل

Gate structural engineering of MOS-like junctionless Carbon nanotube field effect transistor (MOS-like J-CNTFET)

In this article, a new structure is presented for MOS (Metal Oxide Semiconductor)-like junctionless carbon nanotube field effect transistor (MOS-like J-CNTFET), in which dual material gate with different work-functions are used. In the aforementioned structure, the size of the gates near the source and the drain are 14 and 6 nm, respectively, and the work-functions are equal and 0.5 eV less tha...

متن کامل

Gate structural engineering of MOS-like junctionless Carbon nanotube field effect transistor (MOS-like J-CNTFET)

In this article, a new structure is presented for MOS (Metal Oxide Semiconductor)-like junctionless carbon nanotube field effect transistor (MOS-like J-CNTFET), in which dual material gate with different work-functions are used. In the aforementioned structure, the size of the gates near the source and the drain are 14 and 6 nm, respectively, and the work-functions are equal and 0.5 eV less tha...

متن کامل

Switching Performance of Nanotube Core-Shell Heterojunction Electrically Doped Junctionless Tunnel Field Effect Transistor

Abstract: In this paper, a novel tunnel field effect transistor (TFET) is introduced, thatdue to its superior gate controllability, can be considered as a promising candidate forthe conventional TFET. The proposed electrically doped heterojunction TFET(EDHJTFET) has a 3D core-shell nanotube structure with external and internal gatessurrounding the channel that employs el...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nano letters

دوره 6 9  شماره 

صفحات  -

تاریخ انتشار 2006